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We have investigated the recently proposed self-consistent theory of fluctuation-induced transport. In
this framework the subsystem under study is coupled to two independent baths at different temperatures.
In this nonequilibrium system one can extract energy at the expense of increased entropy. This is a sim-
ple model of Maxwell’s-demon-type engine that extracts work out of a nonequilbrium bath by rectifying
internal fluctuations. We point out an error in the earlier results. We have obtained an analytical ex-
pression for the fluctuation-induced transport current in a nonequilibrium state that is valid at any tem-
peratures, and various cases of physical interest have been elucidated.

PACS number(s): 05.60.+w, 05.40.+j, 87.10.+e¢

From thermodynamics, it is well known that useful
work cannot be extracted from equilibrium fluctuations
[1]. In a thermal equilibrium state the principle of de-
tailed balance ensures that no net particle current can
flow in the presence of external potential of arbitrary
shape. In contrast, in a nonequilibrium situation, where
detailed balance is lost, net current flow is possible, i.e.,
one can extract energy at the expense of increased entro-
py. Several models have been proposed recently in this
direction [2-6]. The motion of a heavily damped
Brownian particle, in the presence of asymmetric static
external periodic potential and under nonwhite or corre-
lated fluctuations, is a simple example of a nonequilibri-
um system. In such a system induced current or directed
motion appears, even though the average of the driving
fluctuations vanishes. It turns out that the preferred
direction of motion and the magnitude of induced current
depend sensitively on the shape of the potential as well as
on the statistics of the fluctuations. Moreover, to obtain
induced current the strength of nonwhite noise must
exceed a certain minimum value and the magnitude of in-
duced current shows a maximum value at an intermedi-
ate value of the noise strength. These models [2-7] of en-
gines to obtain coherent response (or rectification) from
unbiased forcings come under the common denomination
of “thermal ratchets” or “fluctuation-induced transport
systems.” [Thermal ratchets refers to a thermodynamic
mechanism (machine) that aids motion of a particle in an
asymmetric periodic (sawtooth type) potential in the
presence of thermal fluctuations.] The idea of thermal
ratchets has been utilized recently for molecular separa-
tion [8]. One of the major motivations of these studies
comes from molecular biophysics, where ratchetlike
mechanism is proposed to explain unidirectional move-
ment of macromolecules or molecular motors. This is a
physical example of preferred directional motion of
Brownian particles (macromolecules) along periodic
structures in the absence of obvious driving potentials,
such as chemical potential gradients or thermal gra-
dients.

*Electronic address: jayan@iopb.ernet.in

1063-651X/96/53(3)/2957(3)/$10.00 53

In a physically well-motivated recent work [9], Millo-
nas points out that all the proposed earlier models [2—6]
are basically phenomenological in nature and no attempt
has been made to formulate the problem from first princi-
ples. Millonas in his treatment constructs a Maxwell’s-
demon-type information engine [9] that extracts work
from a nonequilibrium bath and allows a rigorous deter-
mination of kinetics consistent with the underlying laws
of physics. He explicitly writes down a microscopic
Hamiltonian including the subsystem and two thermal
baths at different temperatures. An existing inequality of
temperatures is exploited to do useful work. After elim-
inating bath variables one obtains the nonlinear Langevin
equation for the subsystem variable Q: namely,

MO+T(Q)Q+U(Q)=E () +V f(Q)ER(L) , (1)

where I'(Q)=T ,+T3f(Q), § 4(t) and £p(¢) are two in-
dependent Gaussian white-noise fluctuating forces with
statistics given by

(E4(1))=0,

(E4(0)E (")) =2T ,T8(¢t —1¢") (2a)
and

<§B(t)>=0 ’

(Ep(D)Ep(2")) =2T zkT8(t —1') , (2b)

T and T are temperatures of the two baths A4 and B, re-
spectively. Henceforth we set the Boltzmann constant k
to unity. The bath B is characterized by a space-
dependent friction coefficient 'y f(Q). In Eq. (1) U'(Q)
is an external force [correspondingly U (Q) is an external
potential] and we have used the expression f(Q) for
[V'(Q)]? of Ref. [9]. In Ref. [9] two different cases are
considered. In the first case nonequilibrium baths are not
in quasithermal equilibrium with one another and
fluctuation-induced transport is derived without making
use of the Fokker-Planck equation. In the second case,
the nonequilibrium baths are taken to be in quasithermal
equilibrium with each other and the results are based on
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the associated Fokker-Planck equation in the high damp-
ing limit. We would like to emphasize that the result for
this second case is not correct for all temperatures (espe-
cially at high temperatures). The final calculations in
Ref. [9] for the second case are done in an overdamped
limit by simply neglectmg 0 term in Eq. (1). We note
that such a procedure is incorrect [10] and the resulting
Fokker-Planck equation [Eq. (8) of Ref. [9]], turns out to
be inconsistent. For example, in an equilibrium situation
(T=T), when the potential U (Q) is unbounded and posi-
tive, i.e., U(Q)— » as Q —* o, the equilibrium distri-
bution comes out to be

P,(Q)=CTI(Q)e VQ/T (3)

where C is the normalization constant. This distribution
function is incorrect because in equilibrium P,(Q) must
have the form

P@(Q)___Ne*U(Q)/T’ (4)

where N is the position-independent normalization con-
stant. Also, if we set I' , =0 (i.e., the particle is coupled
to a single bath B at temperature T) again the equilibrium
distribution of the form of Eq. (3) is obtained. The reason
for this inconsistency can be traced back to the improper
overdamped limit of the original Langevin equation [Eq.

1)]. For example, in the absence of thermal bath A4, San-
cho, San Miguel, and Duerr [11] have shown that the
correct overdamped Langevin equation should be

wo-riYIor

Fpf(QIQ=—U' V70 +V Qg2

(5)

The above equation leads to the correct equilibrium dis-
tribution as mentioned above. The error in the Millonas

T, Tpf'(x)
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treatment [9] follows from the incorrect overdamped lim-
it, where he ignores a term like the second term on the
right-hand side of Eq. (5).

In this Brief Report, we construct the correct Fokker-
Planck equation in the overdamped limit. We use this
equation to study fluctuation-induced transport at any
temperature low as well as high in a system where the
functions U(Q) and f(Q) are periodic under translation
Q—Q+A [UQ+A)=U(Q) and f(Q+A)=f(Q)].
We obtain the correct expression for the mean velocity
(Q) and study several special cases of physical interest.

Following Ref. [11], after a straightforward algebra
one can readily obtain the Fokker-Planck equation for
the variable Q [i.e., the evolution equation for the proba-
bility density P(Q,?)], in the overdamped limit and is
given by

P _ 3 U"Q) 9 1 93 1
at 30 r(Q)P+TFA 3Q I'(Q) 30 F(Q)P
=~ 0 Vf(Q) 3 Vf(Q)
T30 T(0) 30 T(Q)
= 0 [VSQIVf(Q)
+TTy 30 T P. )

This is the correct Fokker-Planck equation in the over-
damped limit in place of Eq. (8) of Ref. [9] and represents
the Smoluchowski approximation to the original Eq. (1).
When the potential U (Q) is unbounded and positive, i.e.,
U(Q)— o as Q-—>* o, the system evolves towards the
stationary distribution P (Q). This stationary distribu-
tion is characterized by no net current flow and is given
by

P (Q)=Ne V@, @

where N is normalization constant and

(8)

U'(x)T'(x) 4 (T—-T)
[TT ,+TTpf(x)] I(x)

w)=[*°

[TT ,+TTpf(x)]

One can readily notice that in the equilibrium situation, i.e., when T=T, P,(Q) reduces to the correct equilibrium dis-

tribution as given in Eq. (4).

To study the case of fluctuation-induced transport, we take a simple case where both U(Q) and f(Q) are periodic
functions and are invariant under the same transformation Q@ —Q +A. Now, the basic problem reduces to finding the
mean velocity (Q ) of the subsystem given the shape of U(Q) and f( Q). Following the procedure of Refs. [9,12,13]
closely, one can get the exact expression for the averaged velocity [in place of Eq. (9) of Ref. [9])

©)

current vanishes identically (since §=0). Also, one can

(0)= 1—exp(—39)
fo”dyexp— fy THIDGOR/ITT , +TT 5 f(x)]}exp[ ¥(x) Jdx
[
where
S=W(x)—W(x +1), (10)

and V¥ is given by Eq. (8). It is easy to see from Egs. (9)
and (10) that in the equilibrium case, when the tempera-
ture difference between the baths is zero (T'=T), the

easily verify that when the subsystem is coupled to a sin-
gle bath, i.e., when either ', or Ty is zero, no net
current is possible. It should be noted that the bath B,
which gives rise to space-dependent friction coefficient
'z f(Q) plays a special role. This can be noticed from
the fact that if f(Q) is independent of Q the induced
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current is zero. In the extreme case of high friction limit
(I' y— o or I'y— ) no net current is possible because
the particle cannot execute the Brownian motion.

We consider the case where amplitude modulations in
f(Q) and f'(Q) are small compared to the amplitude
modulation of the potential U (Q), the second term in Eq.
(8) can be neglected. In this particular limit the problem
becomes equivalent to a particle moving in a spatially
varying temperature field, namely, T(Q)=[TT ,
+TT 5 f(Q)1/T(Q). It is well known in earlier literature
[12—-14] that such a spatial modulation of temperature
field can give induced currents. Moreover, the problem
of evolution of a particle in a spatially varying tempera-
ture field has a fundamental consequence in relation to lo-
cal versus global stability criterion in statistical mechan-
ics [15,16]. In a thermal equilibrium state the Boltzmann
factor gives a relative occupation probability of states at
different local stable points without invoking the
behavior of the potential profile between the states.
However, in the presence of spatially varying tempera-
ture field, the relative stability (or occupation probability)
between different states depends sensitively on the inter-
vening potential and more importantly one can control
the relative stability among two different states by modi-
fying the kinetics in the sparsely occupied intervening
states [14,16].

In conclusion, we have reinvestigated the recently pro-
posed self-consistent microscopic theory of fluctuation-
induced transport [9]. We have pointed out an error in
the earlier theory for the particular case: when two none-
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quilibrium baths are in quasithermal equilibrium with
each other. We have obtained an analytical expression
for fluctuation-induced current in a nonequilibrium situa-
tion valid at low as well as high temperatures and have
discussed various cases of physical interest. Finally, we
would like to mention that our expression for the station-
ary distribution (or steady state) P,(Q) [Eq. (7)] is not a
local function of U(Q) and f(Q). In such a situation as
discussed above the relative stability between two
different local states in U(Q) depends sensitively on the
intervening behavior of U(Q) and f(Q). This can lead to
interesting physics. For example, for given external po-
tential U(Q), as one varies physical parameters (in the
parameter space of T, T, T ,, and T'p) we expect addi-
tional maxima and minima to appear in P,(Q). Thus we
can modify the stability properties of the subsystem. The
qualitative changes in the stationary state of the subsys-
tem are reflected in the behavior of the extrema of the
P.(Q). Moreover, the extrema in P,(Q) may have little
or no relationship to the extrema in the original potential
U(Q). Each new structure in P,(Q) may correspond to
an entirely new state of a subsystem. In the spirit of the
well-known noise-induced phase transitions this is
equivalent to having a hierarchy of phase transitions, in a
nonequilibrium system [17].

The author thanks Mangal C. Mahato for several use-
ful discussions on this subject.
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